Synopses & Reviews
The third edition of Transport Phenomena Fundamentals continues with its streamlined approach to the subject of transport phenomena, based on a unified treatment of heat, mass, and momentum transport using a balance equation approach. The new edition makes more use of modern tools for working problems, such as COMSOL^{®}, Maple^{®}, and MATLAB^{®}. It introduces new problems at the end of each chapter and sorts them by topic for ease of use. It also presents new concepts to expand the utility of the text beyond chemical engineering.
The text is divided into two parts, which can be used for teaching a two-term course. Part I covers the balance equation in the context of diffusive transport—momentum, energy, mass, and charge. Each chapter adds a term to the balance equation, highlighting that term's effects on the physical behavior of the system and the underlying mathematical description. Chapters familiarize students with modeling and developing mathematical expressions based on the analysis of a control volume, the derivation of the governing differential equations, and the solution to those equations with appropriate boundary conditions.
Part II builds on the diffusive transport balance equation by introducing convective transport terms, focusing on partial, rather than ordinary, differential equations. The text describes paring down the microscopic equations to simplify the models and solve problems, and it introduces macroscopic versions of the balance equations for when the microscopic approach fails or is too cumbersome. The text discusses the momentum, Bournoulli, energy, and species continuity equations, including a brief description of how these equations are applied to heat exchangers, continuous contactors, and chemical reactors. The book also introduces the three fundamental transport coefficients: the friction factor, the heat transfer coefficient, and the mass transfer coefficient in the context of boundary layer theory. The final chapter covers the basics of radiative heat transfer, including concepts such as blackbodies, graybodies, radiation shields, and enclosures. The third edition incorporates many changes to the material and includes updated discussions and examples and more than 70 new homework problems.
Review
Plawksy presents the third edition of this in-depth transportphenomena text, updated to correct technical errors, include newly developed computational methods, expand relevance beyond chemicalengineering, and improve practice problems. The text is designed for a two-term sequence of courses. The first half develops the basicbalance equation for diffusive transport. Definitions, assumptions, and basic concepts of equilibria are followed by discussion ofmomentum, energy, mass, charge transport, and gradients, as well as the effect of material viscosity, conductivity, and diffusivity.Chapter 4 introduces the one-dimensional steady-state equation with boundary conditions. Ensuing chapters then incorporate generation,accumulation, conservative transport, waves, and extended surfaces. The second half moves into complex forms of transport, principallyconvection. This section begins with multidimensional effects, potential functions, and fields, anchored by LaPlace and Poissonfunctions. Microscopic and macroscopic balances are used to derive the Navier-Stokes and convective transport equations, followed bylaminar boundary layers, system curvature, and turbulent boundary layers, with a final chapter on radiative transport. Substantialappendices offer a review of vector mathematics as well as some functions, solutions to basic equations, and tables of materials properties.Annotation ©2014 Ringgold, Inc., Portland, OR (protoview.com)
Review
Plawksy presents the third edition of this in-depth transportphenomena text, updated to correct technical errors, include newly developed computational methods, expand relevance beyond chemicalengineering, and improve practice problems. The text is designed for a two-term sequence of courses. The first half develops the basicbalance equation for diffusive transport. Definitions, assumptions, and basic concepts of equilibria are followed by discussion ofmomentum, energy, mass, charge transport, and gradients, as well as the effect of material viscosity, conductivity, and diffusivity.Chapter 4 introduces the one-dimensional steady-state equation with boundary conditions. Ensuing chapters then incorporate generation,accumulation, conservative transport, waves, and extended surfaces. The second half moves into complex forms of transport, principallyconvection. This section begins with multidimensional effects, potential functions, and fields, anchored by LaPlace and Poissonfunctions. Microscopic and macroscopic balances are used to derive the Navier-Stokes and convective transport equations, followed bylaminar boundary layers, system curvature, and turbulent boundary layers, with a final chapter on radiative transport. Substantialappendices offer a review of vector mathematics as well as some functions, solutions to basic equations, and tables of materials properties.Annotation ©2014 Ringgold, Inc., Portland, OR (protoview.com)
Review
Plawksy presents the third edition of this in-depth transportphenomena text, updated to correct technical errors, include newly developed computational methods, expand relevance beyond chemicalengineering, and improve practice problems. The text is designed for a two-term sequence of courses. The first half develops the basicbalance equation for diffusive transport. Definitions, assumptions, and basic concepts of equilibria are followed by discussion ofmomentum, energy, mass, charge transport, and gradients, as well as the effect of material viscosity, conductivity, and diffusivity.Chapter 4 introduces the one-dimensional steady-state equation with boundary conditions. Ensuing chapters then incorporate generation,accumulation, conservative transport, waves, and extended surfaces. The second half moves into complex forms of transport, principallyconvection. This section begins with multidimensional effects, potential functions, and fields, anchored by LaPlace and Poissonfunctions. Microscopic and macroscopic balances are used to derive the Navier-Stokes and convective transport equations, followed bylaminar boundary layers, system curvature, and turbulent boundary layers, with a final chapter on radiative transport. Substantialappendices offer a review of vector mathematics as well as some functions, solutions to basic equations, and tables of materials properties.Annotation ©2014 Ringgold, Inc., Portland, OR (protoview.com)
Review
Plawksy presents the third edition of this in-depth transportphenomena text, updated to correct technical errors, include newly developed computational methods, expand relevance beyond chemicalengineering, and improve practice problems. The text is designed for a two-term sequence of courses. The first half develops the basicbalance equation for diffusive transport. Definitions, assumptions, and basic concepts of equilibria are followed by discussion ofmomentum, energy, mass, charge transport, and gradients, as well as the effect of material viscosity, conductivity, and diffusivity.Chapter 4 introduces the one-dimensional steady-state equation with boundary conditions. Ensuing chapters then incorporate generation,accumulation, conservative transport, waves, and extended surfaces. The second half moves into complex forms of transport, principallyconvection. This section begins with multidimensional effects, potential functions, and fields, anchored by LaPlace and Poissonfunctions. Microscopic and macroscopic balances are used to derive the Navier-Stokes and convective transport equations, followed bylaminar boundary layers, system curvature, and turbulent boundary layers, with a final chapter on radiative transport. Substantialappendices offer a review of vector mathematics as well as some functions, solutions to basic equations, and tables of materials properties.Annotation ©2014 Ringgold, Inc., Portland, OR (protoview.com)