Synopses & Reviews
Gain a solid understanding of the principles of trigonometry and how these concepts apply to real life with McKeague/Turner's TRIGONOMETRY. This book's proven approach presents contemporary concepts in brief, manageable sections using current, detailed examples and interesting applications. Captivating illustrations drawn from Lance Armstrong's cycling success, the Ferris wheel, and even the human cannonball show trigonometry in action. Unique Historical Vignettes offer a fascinating glimpse at how many of the central ideas in trigonometry began.
About the Author
Charles P. "Pat" McKeague earned his B.A. in Mathematics from California State University, Northridge, and his M.S. in Mathematics from Brigham Young University. A well-known author and respected educator, he is a full-time writer and a part-time instructor at Cuesta College. He has published twelve textbooks in mathematics covering a range of topics from basic mathematics to trigonometry. An active member of the mathematics community, Professor McKeague is a popular speaker at regional conferences, including the California Mathematics Council for Community Colleges, the American Mathematical Association of Two-Year Colleges, the National Council of Teachers of Mathematics, the Texas Mathematics Association of Two-Year Colleges, the New Mexico Mathematics Association of Two-Year Colleges, and the National Association for Developmental Education. He is a member of the American Mathematics Association for Two-Year Colleges, the Mathematics Association of America, the National Council of Teachers of Mathematics, and the California Mathematics Council for Community Colleges. Mark D. Turner earned his B.A. in Mathematics from California State University, Fullerton. Professor Turner worked in the aerospace industry for two years with the Systems Modeling and Analysis group at The Aerospace Corporation before completing his graduate work at California Polytechnic State University, where he earned his M.S. in Mathematics and Secondary Teaching Credential. Turner is a full-time instructor at Cuesta College in San Luis Obispo, California. He has been a leading influence in the use of graphing calculator and multimedia technology in the classroom, as well as a leading innovator in instructional website design at his institution. Mark has also created educational materials through his own company, Turner Educational Publishing, including a series of Web-based tutorials on the use of the TI-83 graphing calculator. He is a member of the American Mathematics Association for Two-Year Colleges and the California Mathematics Council for Community Colleges, and is a frequent speaker at annual conferences. Professor Turner has received the CMC3 Award for Teaching Excellence.
Table of Contents
1. THE SIX TRIGNONMETRIC FUNCTIONS. Angles, Degrees, and Special Triangles. The Rectangular Coordinate System. Definition I: Trigonometric Functions. Introduction to Identities. More on Identities. Summary. Test. Projects. 2. RIGHT ANGLE TRIGONOMETRY. Definition II: Right Triangle Trigonometry. Calculators and Trigonometric Functions of an Acute Angle. Solving Right Triangles. Applications. Vectors: A Geometric Approach. Summary. Test. Projects. 3. RADIAN MEASURE. Reference Angle. Radians and Degrees. Definition III: Circular Functions. Arc Length and Area of a Sector. Velocities. Summary. Test. Projects. Cumulative Test. 4. GRAPHING AND INVERSE FUNCTIONS. Basic Graphs. Amplitude, Reflection, and Period. Vertical and Horizontal Translations. The Other Trigonometric Functions. Finding an Equation From its Graph. Graphing Combinations of Functions. Inverse Trigonometric Functions. Summary. Test. Projects. 5. IDENTITIES AND FORMULAS. Proving Identities. Sum and Difference Formulas. Double-Angle Formulas. Half-Angle Formulas. Additional Identities. Summary. Test. Projects. 6. EQUATIONS. Solving Trigonometric Equations. More on Trigonometric Equations. Trigonometric Equations Involving Multiple Angles. Parametric Equations and Further Graphing. Summary. Test. Projects. Cumulative Test. 7. TRIANGLES. The Law of Sines. The Law of Cosines. The Ambiguous Case. The Area of a Triangle. Vectors: An Algebraic Approach. Vectors: The Dot Product. Summary. Test. Projects. 8. COMPLEX NUMBERS AND POLAR COORDINATES. Complex Numbers. Trigonometric Form for Complex Numbers. Products and Quotients in Trigonometric Form. Roots of a Complex Number. Polar Coordinates. Equations in Polar Coordinates and Their Graphs. Summary. Test. Projects. Cumulative Test. Appendix A: REVIEW OF FUNCTIONS. Introduction to Functions. The Inverse of a Function. Answers to Selected Exercises. Index.