Synopses & Reviews
Vector analysis is relatively young in the history of mathematics, however, in the short period of its existence it has become a powerful and central tool in describing and solving a wide range of geometric problems, many, of which, arise in computer graphics. These may be in the form of describing lines, surfaces and volumes, which may touch, collide, intersect, or create shadows upon complex surfaces. Vector Analysis for Computer Graphics provides a complete introduction to vector analysis, especially within the context of computer graphics. The author shows why vectors are useful and how it is possible to develop analytical skills in manipulating the vector algebra. Each topic covered is placed in the context of a practical application within computer graphics. The book is divided into eleven chapters covering the mathematical foundations of vector algebra and its application to lines, planes, intersections, rotating vectors, vector differentiation, projections, rendering and motion.
Review
From the reviews: "Vince's book applies to more than computer graphics: it is a resource for many areas in applied mathematics. ... Students in computer graphics courses would find it very useful if their class discussions moved into the mathematical fundamentals underlying the tools. ... Undergraduate students especially lack the mathematics background that this book provides. ... It is comprehensive and coherent, and a good addition to the library of any computational scientist." (Anthony J. Duben, ACM Computing Reviews, Vol. 49 (8), August, 2008)
Synopsis
In my last book, Geometry for Computer Graphics, I employed a mixture of algebra and vector analysis to prove many of the equations used in computer graphics. At the time, I did not make any distinction between the two methodologies, but slowly it dawned upon me that I had had to discover, for the first time, how to use vector analysis and associated strategies for solving geometric problems. I suppose that mathematicians are taught this as part of their formal mathematical training, but then, I am not a mathematician After some deliberation, I decided to write a book that would introduce the beginner to the world of vectors and their application to the geometric problems encountered in computer graphics. I accepted the fact that there would be some duplication of formulas between this and my last book; however, this time I would concentrate on explaining how problems are solved. The book contains eleven chapters: The first chapter distinguishes between scalar and vector quantities, which is reasonably straightforward. The second chapter introduces vector repres- tation, starting with Cartesian coordinates and concluding with the role of direction cosines in changes in axial systems. The third chapter explores how the line equation has a natural vector interpretation and how vector analysis is used to resolve a variety of line-related, geometric problems. Chapter 4 repeats Chapter 3 in the context of the plane.
Synopsis
This book is a complete introduction to vector analysis, especially within the context of computer graphics. The author shows why vectors are useful and how it is possible to develop analytical skills in manipulating vector algebra. Even though vector analysis is a relatively recent development in the history of mathematics, it has become a powerful and central tool in describing and solving a wide range of geometric problems. The book is divided into eleven chapters covering the mathematical foundations of vector algebra and its application to, among others, lines, planes, intersections, rotating vectors, and vector differentiation.
Synopsis
An ideal course book for mathematics undergraduates and graduates alike, this is a complete introduction to vector analysis/ Each topic covered is given a practical application within computer graphics.
Table of Contents
Scalars and Vectors.- Vector Representation.- Straight Lines.- The Plane.- Reflections.- Intersections.- Rotating Vectors.- Vector Differentiation.- Projections.- Rendering.- Motion.- Appendix A: Vector Algebra.- Appendix B: Vector Triple Product.- References.