Synopses & Reviews
This comprehensive volume introduces elliptic curves and the fundamentals of modeling by a family of random matrices.
Synopsis
Random matrix theory can be used to describe some exotic phenomena in the number theory of elliptic curves. This volume, for researchers, illustrates this beginning with an introduction to elliptic curves and the fundamentals of modelling by a family of random matrices. It covers current results about ranks of elliptic curves, statistical properties of families of elliptic curves and their associated L-functions. It also looks closely at the emerging uses of random matrix theory in this field. This is the only book to give an in-depth treatment of the subject.
About the Author
Brian Conrey is the Executive Director of the American Institute of Mathematics. He is also Professor of Mathematics at the University of Bristol.David Farmer is the Associate Director of the American Institute of Mathematics.Francesco Mezzadri is a Lecturer in the Department of Mathematics, University of Bristol.Nina Snaith is a Lecturer in the Department of Mathematics, University of Bristol.
Table of Contents
Introduction J. B. Conrey, D. W. Farmer, F. Mezzadri and N. C. Snaith; Part I. Families: 1. Elliptic curves, rank in families and random matrices E. Kowalski; 2. Modeling families of L-functions D. W. Farmer; 3. Analytic number theory and ranks of elliptic curves M. P. Young; 4. The derivative of SO(2N +1) characteristic polynomials and rank 3 elliptic curves N. C. Snaith; 5. Function fields and random matrices D. Ulmer; 6. Some applications of symmetric functions theory in random matrix theory A. Gamburd; Part II. Ranks of Quadratic Twists: 7. The distribution of ranks in families of quadratic twists of elliptic curves A. Silverberg; 8. Twists of elliptic curves of rank at least four K. Rubin and A. Silverberg; 9. The powers of logarithm for quadratic twists C. Delaunay and M. Watkins; 10. Note on the frequency of vanishing of L-functions of elliptic curves in a family of quadratic twists C. Delaunay; 11. Discretisation for odd quadratic twists J. B. Conrey, M. O. Rubinstein, N. C. Snaith and M. Watkins; 12. Secondary terms in the number of vanishings of quadratic twists of elliptic curve L-functions J. B. Conrey, A. Pokharel, M. O. Rubinstein and M. Watkins; 13. Fudge factors in the Birch and Swinnerton-Dyer Conjecture K. Rubin; Part III. Number Fields and Higher Twists: 14. Rank distribution in a family of cubic twists M. Watkins; 15. Vanishing of L-functions of elliptic curves over number fields C. David, J. Fearnley and H. Kisilevsky; Part IV. Shimura Correspondence, and Twists: 16. Computing central values of L-functions F. Rodriguez-Villegas; 17. Computation of central value of quadratic twists of modular L-functions Z. Mao, F. Rodriguez-Villegas and G. Tornaria; 18. Examples of Shimura correspondence for level p2 and real quadratic twists A. Pacetti and G. Tornaria; 19. Central values of quadratic twists for a modular form of weight H. Rosson and G. Tornaria; Part V. Global Structure: Sha and Descent: 20. Heuristics on class groups and on Tate-Shafarevich groups C. Delaunay; 21. A note on the 2-part of X for the congruent number curves D. R. Heath-Brown; 22. 2-Descent tThrough the ages P. Swinnerton-Dyer.