Synopses & Reviews
Reflecting Cengage Learning's commitment to offering flexible teaching solutions and value for students and instructors, this new hybrid edition features the instructional presentation found in the printed text while delivering end-of-section exercises online in Enhanced WebAssign. The result--a briefer printed text that engages students online! Full of relevant, diverse, and current real-world applications, Stefan Waner and Steven Costenoble's FINITE MATHEMATICS, Sixth Edition helps you relate to mathematics. A large number of the applications are based on real, referenced data from business, economics, the life sciences, and the social sciences. Thorough, clearly delineated spreadsheet and TI Graphing Calculator instruction appears throughout the book. Acclaimed for its readability and supported by the authors' popular website, this book will help you grasp and understand finite mathematics--whatever your learning style may be.
Review
"I have recommended it to colleagues. It is head-and-shoulders above our current book."
Review
"This book is superior to our current text."
Review
"Overall it is an excellent text."
About the Author
Stefan Waner and Steven R. Costenoble both received their Ph.D. from the University of Chicago, having studied several years apart with the same advisor, J. Peter May. Their paths merged when Steven joined Stefan at Hofstra University in 1987; since then they have coauthored 15 research papers in algebraic topology. By the early 1990s they had become dissatisfied with many of the Finite Mathematics and Applied Calculus textbooks. They wanted textbooks that were more readable and relevant to students' interests, containing examples and exercises that were interesting, and reflected the interactive approaches and techniques they found worked well with their own students. It therefore seemed natural to extend their research collaboration to a joint textbook writing project that expressed these ideals. To this day they continue to work together on their textbook projects, their research in algebraic topology, and their teaching. Stefan Waner and Steven R. Costenoble both received their Ph.D. from the University of Chicago, having studied several years apart with the same advisor, J. Peter May. Their paths merged when Steven joined Stefan at Hofstra University in 1987; since then they have coauthored 15 research papers in algebraic topology. By the early 1990s they had become dissatisfied with many of the Finite Mathematics and Applied Calculus textbooks. They wanted textbooks that were more readable and relevant to students' interests, containing examples and exercises that were interesting, and reflected the interactive approaches and techniques they found worked well with their own students. It therefore seemed natural to extend their research collaboration to a joint textbook writing project that expressed these ideals. To this day they continue to work together on their textbook projects, their research in algebraic topology, and their teaching.
Table of Contents
0. PRECALCULUS REVIEW. Real Numbers. Exponents and Radicals. Multiplying and Factoring Algebraic Equations. Rational Expressions. Solving Polynomial Equations. Solving Miscellaneous Equations. The Coordinate Plane. 1. FUNCTIONS AND APPLICATIONS. Functions from the Numerical, Algebraic, and Graphical Viewpoints. Functions and Models. Linear Functions and Models. Linear Regression. 2. THE MATHEMATICS OF FINANCE. Simple Interest. Compound Interest. Annuities, Loans, and Bonds. 3. SYSTEMS OF LINEAR EQUATIONS AND MATRICES. Systems of Two Equations in Two Unknowns. Using Matrices to Solve Systems of Equations. Applications of Systems of Linear Equations. 4. MATRIX ALGEBRA AND APPLICATIONS. Matrix Addition and Scalar Multiplication. Matrix Multiplication. Matrix Inversion. Game Theory. Input-Output Models. 5. LINEAR PROGRAMMING. Graphing Linear Inequalities. Solving Linear Programming Problems Graphically. The Simplex Method: Solving Standard Maximization Problems. The Simplex Method: Solving General Linear Programming Problems. The Simplex Method and Duality. 6. SETS AND COUNTING. Sets and Set Operations. Cardinality. The Addition and Multiplication Principles. Permutations and Combinations. 7. PROBABILITY. Sample Spaces and Events. Relative Frequency. Probability and Probability Models. Probability and Counting Techniques. Conditional Probability and Independence. Bayes' Theorem and Applications. Markov Systems. 8. RANDOM VARIABLES AND STATISTICS. Random Variables and Distributions. Bernoulli Trials and Binomial Random Variables. Measures of Central Tendency. Measures of Dispersion. Normal Distributions.