Synopses & Reviews
When reality is modeled by computation, matrices are often the connection between the continuous physical world and the finite algorithmic one. Usually, the more detailed the model, the bigger the matrix, the better the answer, however, efficiency demands that every possible advantage be exploited. The articles in this volume are based on recent research on sparse matrix computations. This volume looks at graph theory as it connects to linear algebra, parallel computing, data structures, geometry, and both numerical and discrete algorithms. The articles are grouped into three general categories: graph models of symmetric matrices and factorizations, graph models of algorithms on nonsymmetric matrices, and parallel sparse matrix algorithms. This book will be a resource for the researcher or advanced student of either graphs or sparse matrices; it will be useful to mathematicians, numerical analysts and theoretical computer scientists alike.
Synopsis
This IMA Volume in Mathematics and its Appllcations GRAPH THEORY AND SPARSE MATRIX COMPUTATION is based on the proceedings of a workshop that was an integraI part of the 1991- 92 IMA program on "Applied Linear AIgebra." The purpose of the workshop was to bring together people who work in sparse matrix computation with those who conduct research in applied graph theory and grl: l, ph algorithms, in order to foster active cross-fertilization. We are grateful to Richard Brualdi, George Cybenko, Alan Geo ge, Gene Golub, Mitchell Luskin, and Paul Van Dooren for planning and implementing the year-Iong program. We espeeially thank Alan George, John R. Gilbert, and Joseph W.H. Liu for organizing this workshop and editing the proceedings. The finaneial support of the National Science Foundation made the workshop possible. A vner Friedman Willard Miller. Jr. PREFACE When reality is modeled by computation, linear algebra is often the con nec- tiori between the continuous physical world and the finite algorithmic one. Usually, the more detailed the model, the bigger the matrix, the better the answer. Efficiency demands that every possible advantage be exploited: sparse structure, advanced com- puter architectures, efficient algorithms. Therefore sparse matrix computation knits together threads from linear algebra, parallei computing, data struetures, geometry, and both numerieal and discrete algorithms.