Synopses & Reviews
This is the first of the encyclopaedia volumes devoted to general topology. It has two parts. The first outlines the basic concepts and constructions of general topology, including several topics which have not previously been covered in English language texts. The second part presents a survey of dimension theory, from the very beginnings to the most important recent developments. The principal ideas and methods are treated in detail, and the main results are provided with sketches of proofs. The authors have suceeded admirably in the difficult task of writing a book which will not only be accessible to the general scientist and the undergraduate, but will also appeal to the professional mathematician. The authors' efforts to detail the relationship between more specialized topics and the central themes of topology give the book a broad scholarly appeal which far transcends narrow disciplinary lines.
Synopsis
General topology is the domain ofmathematics devoted to the investigation of the concepts of continuity and passage to a limit at their natural level of generality. The most basic concepts of general topology, that of a topological space and a continuous map, were introduced by Hausdorffin 1914. Oneofthecentralproblemsoftopologyisthedeterminationandinvestigation of topological invariants; that is, properties ofspaces which are preserved under homeomorphisms. Topological invariants need not be numbers. Connectedness, compactness, andmetrizability, forexample, arenon-numericaltopologicalinvariants.Dimen- sional invariants, on the otherhand, areexamplesofnumericalinvariants which take integervalues on specific topological spaces. Part II ofthis book is devoted to them. Topological invariants which take values in the cardinal numbers play an especially important role, providing the raw material for many useful coin" putations. Weight, density, character, and Suslin number are invariants ofthis type. Certain classes of topological spaces are defined in terms of topological in- variants. Particularly important examples include the metrizable spaces, spaces with a countable base, compact spaces, Tikhonov spaces, Polish spaces, Cech- complete spaces and the symmetrizable spaces.