Synopses & Reviews
An introduction for readers with some high school mathematics to both the higher and the more fundamental developments of the basic themes of elementary mathematics. Chapters begin with a series of elementary problems, cleverly concealing more advanced mathematical ideas. These are then made explicit and further developments explored, thereby deepending and broadening the readers' understanding of mathematics. The text arose from a course taught for several years at St. Petersburg University, and nearly every chapter ends with an interesting commentary on the relevance of its subject matter to the actual classroom setting. However, it may be recommended to a much wider readership; even the professional mathematician will derive much pleasureable instruction from it.
Synopsis
The present book is rare, even unique of its kind, at least among mathematics texts published in Russian. You have before you neither a textbook nor a monograph, although these selected chapters from elementary mathematics certainly constitute a fine educational tool. It is my opinion that this is more than just another book about mathematics and the art of teaching that subject. Without considering the actual topics treated (the author himself has described these in sufficient detail in of the book as a whole, the Introduction), I shall attempt to convey a general idea and describe the impressions it makes on the reader. Almost every chapter begins by considering well-known problems of elementary mathematics. Now, every worthwhile elementary problem has hidden behind its diverting formulation what might be called "higher mathematics," or, more simply, mathematics, and it is this that the author demonstrates to the reader in this book. It is thus to be expected that every chapter should contain subject matter that is far from elementary. The end result of reading the book is that the material treated has become for the reader "three-dimensional" as it were, as in a hologram, capable of being viewed from all sides.
Table of Contents
I Induction II Combinatorics III Geometric Transformations IV
Inequalities V Sets, Equations, and Polynomials VI Graphs VII The
Pigeonhole Principle VIII The Quaternions IX The Derivative X The
Foundations of Analysis