Synopses & Reviews
This book constructs the mathematical apparatus of classical mechanics from the beginning, examining basic problems in dynamics like the theory of oscillations and the Hamiltonian formalism. The author emphasizes geometrical considerations and includes phase spaces and flows, vector fields, and Lie groups. Discussion includes qualitative methods of the theory of dynamical systems and of asymptotic methods like averaging and adiabatic invariance.
Review
Second Edition V.I. Arnol'd Mathematical Methods of Classical Mechanics "The book's goal is to provide an overview, pointing out highlights and unsolved problems, and putting individual results into a coherent context. It is full of historical nuggets, many of them surprising . . . The examples are especially helpful; if a particular topic seems difficult, a later example frequently tames it. The writing is refreshingly direct, never degenerating into a vocabulary lesson for its own sake. The book accomplishes the goals it has set for itself. While it is not an introduction to the field, it is an excellent overview." --AMERICAN MATHEMATICAL MONTHLY
Review
Second Edition
V.I. Arnol'd
Mathematical Methods of Classical Mechanics
"The book's goal is to provide an overview, pointing out highlights and unsolved problems, and putting individual results into a coherent context. It is full of historical nuggets, many of them surprising . . . The examples are especially helpful; if a particular topic seems difficult, a later example frequently tames it. The writing is refreshingly direct, never degenerating into a vocabulary lesson for its own sake. The book accomplishes the goals it has set for itself. While it is not an introduction to the field, it is an excellent overview."
--AMERICAN MATHEMATICAL MONTHLY
Synopsis
In this text, the author constructs the mathematical apparatus of classical mechanics from the beginning, examining all the basic problems in dynamics, including the theory of oscillations, the theory of rigid body motion, and the Hamiltonian formalism. This modern approch, based on the theory of the geometry of manifolds, distinguishes iteself from the traditional approach of standard textbooks. Geometrical considerations are emphasized throughout and include phase spaces and flows, vector fields, and Lie groups. The work includes a detailed discussion of qualitative methods of the theory of dynamical systems and of asymptotic methods like perturbation techniques, averaging, and adiabatic invariance.
Synopsis
This book constructs the mathematical apparatus of classical mechanics from the beginning, examining basic problems in dynamics like the theory of oscillations and the Hamiltonian formalism. The author emphasizes geometrical considerations and includes phase spaces and flows, vector fields, and Lie groups. Discussion includes qualitative methods of the theory of dynamical systems and of asymptotic methods like averaging and adiabatic invariance.
Table of Contents
NEWTONIAN MECHANICS: Experimental facts. Investigation of the equations of motion.- LAGRANGIAN MECHANICS: Variational principles. Lagrangian mechanics on manifolds. Oscillations. Rigid Bodies..- HAMILTONIAN MECHANICS: Differential forms. Symplectic manifolds. Canonical formalism. Introduction to perturbation theory.- Appendices.