Synopses & Reviews
Spatial Patterns offers a study of nonlinear higher order model equations that are central to the description and analysis of spatio-temporal pattern formation in the natural sciences. Through a unique combination of results obtained by rigorous mathematical analysis and computational studies, the text exhibits the principal families of solutions, such as kinks, pulses and periodic solutions, and their dependence on critical eigenvalue parameters, and points to a rich structure, much of which still awaits exploration. The exposition unfolds systematically, first focusing on a single equation to achieve optimal transparency, and then branching out to wider classes of equations. The presentation is based on results from real analysis and the theory of ordinary differential equations. Key features: * presentation of a new mathematical method specifically designed for the analysis of multi-bump solutions of reversible systems * strong emphasis on the global structure of solution branches * extensive numerical illustrations of complex solutions and their dependence on eigenvalue parameters * application of the theory to well-known equations in mathematical physics and mechanics, such as the Swift--Hohenberg equation, the nonlinear Schrödinger equation and the equation for the nonlinearly supported beam * includes recent original results by the authors * exercises scattered throughout the text to help illuminate the theory * many research problems The book is intended for mathematicians who wish to become acquainted with this new area of partial and ordinary differential equations, for mathematical physicists who wish to learn about the theory developed for a class of well-known higher order pattern-forming model equations, and for graduate students who are looking for an exciting and promising field of research.
Review
"The book is on the one hand written for mathematicians and mathematical physicists, who want to learn about this fascinating subject, and on the other hand also accessible to graduate students. One finds a large amount of exercises and open problems that can serve as a starting point for further research . . . The authors have produced a well-written book, which gives a good picture of what is known about the canonical equation." --Quantum Information and Computation "The book is very well written in a very clear and readable style, which makes it accessible to a nonspecialist or graduate student. There are a large number of exercises, which fill in details of proofs or provide illuminating examples or straightforward generalisations as well as a good number of open problems. There are also a large number of numerically computed graphs of branching curves and bifurcation curves throughout the book, which provide insights into the mathematically formulated results. The book is a valuable contribution to the literature, for both the specialist and the nonspecialist reader." --Mathematical Reviews
Table of Contents
Preface Outline 1. Introduction Part I: The Symmetric Bistable Equation 2. Real Eigenvalues 3. Estimates 4. Periodic Solutions 5. Kinks and Pulses 6. Chaotic Solutions 7. Variational Problems Part II: Related Equations 8. The Asymmetric Double-Well Potential 9. The Swift--Hohenberg Equation 10. Waves in Nonlinearly Supported Beams References Index