50
Used, New, and Out of Print Books - We Buy and Sell - Powell's Books
Cart |
|  my account  |  wish list  |  help   |  800-878-7323
Hello, | Login
MENU
  • Browse
    • New Arrivals
    • Bestsellers
    • Featured Preorders
    • Award Winners
    • Audio Books
    • See All Subjects
  • Used
  • Staff Picks
    • Staff Picks
    • Picks of the Month
    • Bookseller Displays
    • 50 Books for 50 Years
    • 25 Best 21st Century Sci-Fi & Fantasy
    • 25 PNW Books to Read Before You Die
    • 25 Books From the 21st Century
    • 25 Memoirs to Read Before You Die
    • 25 Global Books to Read Before You Die
    • 25 Women to Read Before You Die
    • 25 Books to Read Before You Die
  • Gifts
    • Gift Cards & eGift Cards
    • Powell's Souvenirs
    • Journals and Notebooks
    • socks
    • Games
  • Sell Books
  • Blog
  • Events
  • Find A Store

Don't Miss

  • Spring Sale
  • Scientifically Proven Sale
  • Powell's Author Events
  • Oregon Battle of the Books
  • Audio Books

Visit Our Stores


Jinwoo Chong: Clock In: Jinwoo Chong’s Playlist for 'Flux' (0 comment)
I had my first inklings of the novel that eventually became Flux about a year after I was laid off from my first job after college, the result of a corporate takeover of my company that eliminated my entire department. While a tough hurdle to overcome at twenty-one years old, I learned a lot about self-sufficiency....

Read More»

  • Esther Yi: The Writers That Haunt Me: Esther Yi’s Bookshelf for 'Y/N' (0 comment)
  • Kelsey Ford: 10 Books That Celebrate Women’s Rights and Women’s Wrongs (0 comment)

{1}
##LOC[OK]##
{1}
##LOC[OK]## ##LOC[Cancel]##
{1}
##LOC[OK]## ##LOC[Cancel]##

Statics & Mechanics of Materials with Access Code

by Hibbeler, R. C.
Statics & Mechanics of Materials with Access Code

  • Comment on this title
  • Synopses & Reviews

ISBN13: 9780133455410
ISBN10: 0133455416



All Product Details

View Larger ImageView Larger Images
Ships free on qualified orders.
Add to Cart
0.00
List Price:0.00
Hardcover
Ships in 1 to 3 days
Add to Wishlist

Synopses & Reviews

Publisher Comments

ALERT: Before you purchase, check with your instructor or review your course syllabus to ensure that you select the correct ISBN. Several versions of Pearson's MyLab & Mastering products exist for each title, including customized versions for individual schools, and registrations are not transferable. In addition, you may need a CourseID, provided by your instructor, to register for and use Pearson's MyLab & Mastering products.

 

Packages

Access codes for Pearson's MyLab & Mastering products may not be included when purchasing or renting from companies other than Pearson; check with the seller before completing your purchase.

 

Used or rental books

If you rent or purchase a used book with an access code, the access code may have been redeemed previously and you may have to purchase a new access code.

 

Access codes

Access codes that are purchased from sellers other than Pearson carry a higher risk of being either the wrong ISBN or a previously redeemed code. Check with the seller prior to purchase.

  -- For introductory combined Statics and Mechanics of Materials courses found in ME, CE, AE, and Engineering Mechanics departments.

  

Statics and Mechanics of Materials provides a comprehensive and well-illustrated introduction to the theory and application of statics and mechanics of materials. The text presents a commitment to the development of student problem-solving skills and features many pedagogical aids unique to Hibbeler texts.

 

MasteringEngineering for Statics and Mechanics of Materials is a total learning package. This innovative online program emulates the instructor’s office—hour environment, guiding students through engineering concepts from Statics and Mechanics of Materials with self-paced individualized coaching.

  

Teaching and Learning Experience

This program will provide a better teaching and learning experience–for you and your students. It provides:

  • Individualized Coaching: MasteringEngineering emulates the instructor’s office-hour environment using self-paced individualized coaching.
  • Problem Solving: A large variety of problem types stress practical, realistic situations encountered in professional practice.
  • Visualization: The photorealistic art program is designed to help students visualize difficult concepts.
  • Review and Student Support: A thorough end of chapter review provides students with a concise reviewing tool.
  • Accuracy: The accuracy of the text and problem solutions has been thoroughly checked by four other parties.

Note: MasteringEngineering is not a self-paced technology and should only be purchased when required by an instructor.  

0133455416 / 9780133455410 Statics and Mechanics of Materials Plus MasteringEngineering with Pearson eText -- Access Card Package

Package consists of:

  • 0133451607 / 9780133451603 Statics and Mechanics of Materials

  • 0133454681 / 9780133454680 MasteringEngineering with Pearson eText -- Standalone Access Card -- for Statics and Mechanics of Materials

Review

“It is very difficult to find a text book that would compete with Hibbeler’s readability and clarity at the undergraduate level.” — Fady F. Barsoum, Embry-Riddle Aeronautical University

“The large variety of illustrated homework problems are helpful for class demonstrations, group problem solving and real situation homework assignments. The inside covers are a very handy resource for both students and instructors.” — Barbara Lograsso, Michigan Technological University

“Nice formulation and presentation of equations with clear drawings and photographs.” — Marehalli Prasad, Stevens Institute of Technology

Synopsis

ALERT: Before you purchase, check with your instructor or review your course syllabus to ensure that youselect the correct ISBN. Several versions of Pearson's MyLab & Mastering products exist for each title, including customized versions for individual schools, and registrations are not transferable. In addition, you may need a CourseID, provided by your instructor, to register for and use Pearson's MyLab & Mastering products.

Packages

Access codes for Pearson's MyLab & Mastering products may not be included when purchasing or renting from companies other than Pearson; check with the seller before completing your purchase.

Used or rental books

If you rent or purchase a used book with an access code, the access code may have been redeemed previously and you may have to purchase a new access code.

Access codes

Access codes that are purchased from sellers other than Pearson carry a higher risk of being either the wrong ISBN or a previously redeemed code. Check with the seller prior to purchase.

-- Normal 0 false false false EN-US X-NONE X-NONE For introductory combined Statics and Mechanics of Materials courses found in ME, CE, AE, and Engineering Mechanics departments.

Statics and Mechanics of Materials provides a comprehensive and well-illustrated introduction to the theory and application of statics and mechanics of materials. The text presents a commitment to the development of student problem-solving skills and features many pedagogical aids unique to Hibbeler texts.

MasteringEngineering for Statics and Mechanics of Materials is a total learning package. This innovative online program emulates the instructor s office hour environment, guiding students through engineering concepts from Statics and Mechanics of Materials with self-paced individualized coaching.

Teaching and Learning Experience

This program will provide a better teaching and learning experience for you and your students. It provides:

  • Individualized Coaching: MasteringEngineering emulates the instructor s office-hour environment using self-paced individualized coaching.
  • Problem Solving: A large variety of problem types stress practical, realistic situations encountered in professional practice.
  • Visualization: The photorealistic art program is designed to help students visualize difficult concepts.
  • Review and Student Support: A thorough end of chapter review provides students with a concise reviewing tool.
  • Accuracy: The accuracy of the text and problem solutions has been thoroughly checked by four other parties.

Note: MasteringEngineering is not a self-paced technology and should only be purchased when required by an instructor.

0133455416 / 9780133455410 Statics and Mechanics of Materials Plus MasteringEngineering with Pearson eText -- Access Card Package

Package consists of:

  • 0133451607 / 9780133451603 Statics and Mechanics of Materials
  • 0133454681 / 9780133454680 MasteringEngineering with Pearson eText -- Standalone Access Card -- for Statics and Mechanics of Materials
"

About the Author

R.C. Hibbeler graduated from the University of Illinois at Urbana with a BS in Civil Engineering (major in Structures) and an MS in Nuclear Engineering. He obtained his PhD in Theoretical and Applied Mechanics from Northwestern University.

Hibbeler’s professional experience includes postdoctoral work in reactor safety and analysis at Argonne National Laboratory, and structural work at Chicago Bridge and Iron, as well as Sargent and Lundy in Tucson. He has practiced engineering in Ohio, New York, and Louisiana.

Hibbeler currently teaches at the University of Louisiana, Lafayette. In the past he has taught at the University of Illinois at Urbana, Youngstown State University, Illinois Institute of Technology, and Union College.


Table of Contents

Statics

1 General Principles 3
Chapter Objectives 3
1.1 Mechanics 3
1.2 Fundamental Concepts 4
1.3 Units of Measurement 7
1.4 The International System of Units 9
1.5 Numerical Calculations 10
1.6 General Procedure for Analysis 12

2 Force Vectors 17
Chapter Objectives 17
2.1 Scalars and Vectors 17
2.2 Vector Operations 18
2.3 Vector Addition of Forces 20
2.4 Addition of a System of Coplanar Forces 30
2.5 Cartesian Vectors 38
2.6 Addition of Cartesian Vectors 41
2.7 Position Vectors 50
2.8 Force Vector Directed Along a Line 53
2.9 Dot Product 60

3 Force System Resultants 75
Chapter Objectives 75
3.1 Moment of a Force–Scalar Formulation 75
3.2 Cross Product 79
3.3 Moment of a Force–Vector Formulation 82
3.4 Principle of Moments 86
3.5 Moment of a Force about a Specified Axis 96
3.6 Moment of a Couple 103
3.7 Simplification of a Force and Couple System 112
3.8 Further Simplification of a Force and Couple System 122

4 Equilibrium of a Rigid Body 139
Chapter Objectives 139
4.1 Conditions for Rigid-Body Equilibrium 139
4.2 Free-Body Diagrams 141
4.3 Equations of Equilibrium 151
4.4 Two- and Three-Force Members 157
4.5 Free-Body Diagrams 167
4.6 Equations of Equilibrium 172
4.7 Characteristics of Dry Friction 180
4.8 Problems Involving Dry Friction 184
4.9 Frictional Forces on Flat Belts 197
4.10 Frictional Forces on Screws 200

5 Structural Analysis 215
Chapter Objectives 215
5.1 Simple Trusses 215
5.2 The Method of Joints 218
5.3 Zero-Force Members 224
5.4 The Method of Sections 231
5.5 Frames and Machines 240

6 Center of Gravity, Centroid, and Moment of Inertia 261
Chapter Objectives 261
6.1 Center of Gravity, Center of Mass, and the Centroid of a Body 261
6.2 Composite Bodies 273
6.3 Resultant of a Distributed Loading 281
6.4 Moments of Inertia for Areas 290
6.5 Parallel-Axis Theorem for an Area 291
6.6 Moments of Inertia for Composite Areas 298

7 Stress and Strain 309
Chapter Objectives 309
7.1 Introduction 309
7.2 Internal Resultant Loadings 310
7.3 Stress 322
7.4 Average Normal Stress in an Axially Loaded Bar 324
7.5 Average Shear Stress 331
7.6 Allowable Stress 342
7.7 Design of Simple Connections 343
7.8 Deformation 355
7.9 Strain 356

Mechanics of Materials

8 Mechanical Properties of Materials 373
Chapter Objectives 373
8.1 The Tension and Compression Test 373
8.2 The Stress—Strain Diagram 375
8.3 Stress—Strain Behavior of Ductile and Brittle Materials 379
8.4 Hooke’s Law 382
8.5 Strain Energy 384
8.6 Poisson’s Ratio 392
8.7 The Shear Stress—Strain Diagram 394

9 Axial Load 405
Chapter Objectives 405
9.1 Saint-Venant’s Principle 405
9.2 Elastic Deformation of an Axially Loaded Member 408
9.3 Principle of Superposition 421
9.4 Statically Indeterminate Axially Loaded Member 422
9.5 The Force Method of Analysis for Axially Loaded Members 428
9.6 Thermal Stress 434
9.7 Stress Concentrations 440

10 Torsion 451
Chapter Objectives 451
10.1 Torsional Deformation of a Circular Shaft 451
10.2 The Torsion Formula 454
10.3 Power Transmission 461
10.4 Angle of Twist 468
10.5 Statically Indeterminate Torque-Loaded Members 481
*10.6 Solid Noncircular Shafts 488
10.7 Stress Concentration 492

11 Bending 501
Chapter Objectives 501
11.1 Shear and Moment Diagrams 501
11.2 Graphical Method for Constructing Shear and Moment Diagrams 508
11.3 Bending Deformation of a Straight Member 525
11.4 The Flexure Formula 529
11.5 Unsymmetric Bending 542
11.6 Stress Concentrations 550

12 Transverse Shear 559
Chapter Objectives 559
12.1 Shear in Straight Members 559
12.2 The Shear Formula 561
12.3 Shear Flow in Built-Up Members 578

13 Combined Loadings 591
Chapter Objectives 591
13.1 Thin-Walled Pressure Vessels 591
13.2 State of Stress Caused by Combined
Loadings 598

14 Stress and Strain Transformation 619
Chapter Objectives 619
14.1 Plane-Stress Transformation 619
14.2 General Equations of Plane-Stress
Transformation 624
14.3 Principal Stresses and Maximum In-Plane
Shear Stress 627
14.4 Mohr’s Circle–Plane Stress 639
14.5 Absolute Maximum Shear Stress 650
14.6 Plane Strain 657
14.7 General Equations of Plane-Strain Transformation 658
*14.8 Mohr’s Circle–Plane Strain 666
14.9 Strain Rosettes 674
14.10 Material-Property Relationships 676

15 Design of Beams and Shafts 693
Chapter Objectives 693
15.1 Basis for Beam Design 693
15.2 Prismatic Beam Design 696
*15.3 Fully Stressed Beams 710

16 Deflection of Beams and Shafts 717
Chapter Objectives 717
16.1 The Elastic Curve 717
16.2 Slope and Displacement by Integration 721
*16.3 Discontinuity Functions 735
16.4 Method of Superposition 745
16.5 Statically Indeterminate Beams and Shafts—Method of Superposition 752

17 Buckling of Columns 769
Chapter Objectives 769
17.1 Critical Load 769
17.2 Ideal Column with Pin Supports 772
17.3 Columns Having Various Types of Supports 778
*17.4 The Secant Formula 788
*17.5 Inelastic Buckling 794

Appendices
A. Mathematical Review and Expressions 804
B. Geometric Properties of An Area and Volume 808
C. Geometric Properties of Wide-Flange Sections 810
D. Slopes and Deflections of Beams 814
Fundamental Problems Partial Solutions and Answers 816
Answers to Selected Problems 844
Index 871


What Our Readers Are Saying

Be the first to share your thoughts on this title!




Product Details

ISBN:
9780133455410
Binding:
Hardcover
Publication date:
08/02/2013
Publisher:
Prentice Hall
Language:
English
Edition:
4
Pages:
896
Height:
1.40IN
Width:
8.30IN
Thickness:
1.25
Author:
Russell C Hibbeler
Author:
Russell C. Hibbeler
Media Run Time:
B
Subject:
Mechanical Engineering-General

Ships free on qualified orders.
Add to Cart
0.00
List Price:0.00
Hardcover
Ships in 1 to 3 days
Add to Wishlist
Used Book Alert for book Receive an email when this ISBN is available used.
{1}
##LOC[OK]##
{1}
##LOC[OK]## ##LOC[Cancel]##
{1}
##LOC[OK]## ##LOC[Cancel]##
{1}
##LOC[OK]##
{1}
##LOC[OK]## ##LOC[Cancel]##
{1}
##LOC[OK]## ##LOC[Cancel]##
{1}
##LOC[OK]##
{1}
##LOC[OK]## ##LOC[Cancel]##
{1}
##LOC[OK]## ##LOC[Cancel]##
{1}
##LOC[OK]##
{1}
##LOC[OK]## ##LOC[Cancel]##
{1}
##LOC[OK]## ##LOC[Cancel]##
  • Twitter
  • Facebook
  • Pinterest
  • Instagram

  • Help
  • Guarantee
  • My Account
  • Careers
  • About Us
  • Security
  • Wish List
  • Partners
  • Contact Us
  • Shipping
  • Transparency ACT MRF
  • Sitemap
  • © 2023 POWELLS.COM Terms

{1}
##LOC[OK]##
{1}
##LOC[OK]## ##LOC[Cancel]##
{1}
##LOC[OK]## ##LOC[Cancel]##
{1}
##LOC[OK]##
{1}
##LOC[OK]## ##LOC[Cancel]##
{1}
##LOC[OK]## ##LOC[Cancel]##
{1}
##LOC[OK]##
{1}
##LOC[OK]## ##LOC[Cancel]##
{1}
##LOC[OK]## ##LOC[Cancel]##
{1}
##LOC[OK]##
{1}
##LOC[OK]## ##LOC[Cancel]##
{1}
##LOC[OK]## ##LOC[Cancel]##